

SS Solutions for Eco-nomically Sustainable Farming

Kevin Ashford Regional Soil Agronomist

Ending the weeds winning streak

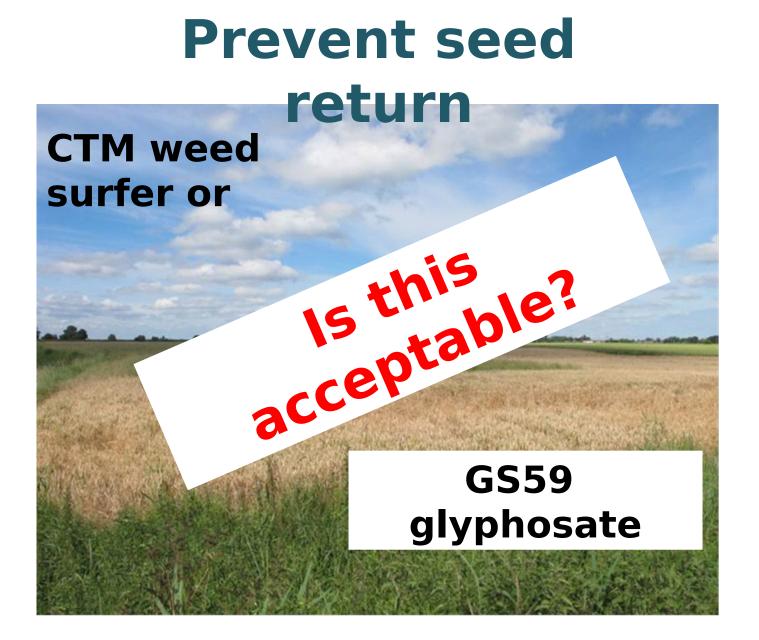
The Impact of a Chemically Copyright The Glenside Group Ltd 2015 dependent system

- The problem with weeds
- Chemical and cultural control options
- Crop competition
- Germination / Dormancy
- The importance of soil structure
- Impact of chemicals
 Bioscence

Blackgrass 2-20 heads per plant

- 100 seeds per head
- 500 heads/m2 can easily get to 50000 seeds / m2

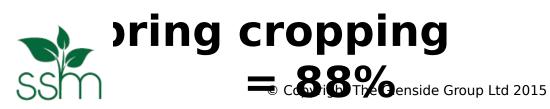
 12 plants /m2 can cause a 5% yield loss in winter wheat.
 "Control of Blackgrass populations of 1 plant/m2 may be justified in high risk situations."



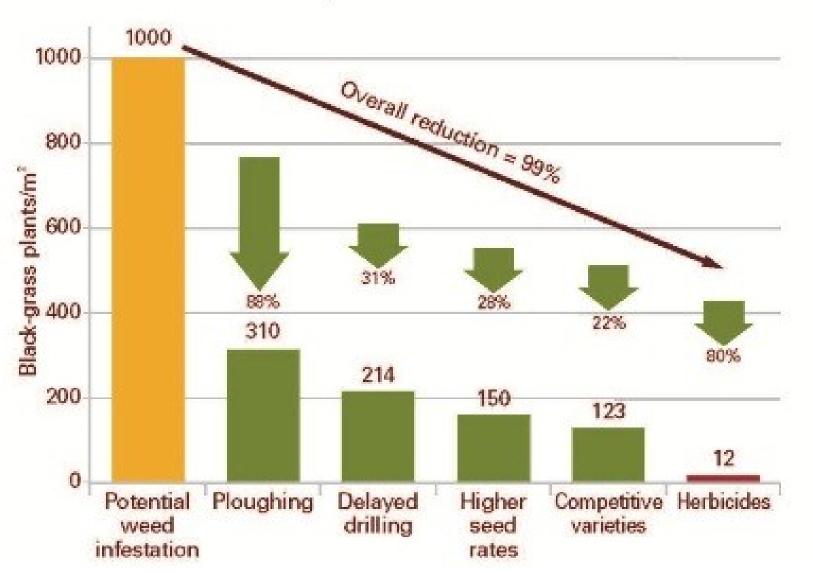
 $\ensuremath{\mathbb{C}}$ Copyright The Glenside Group Ltd 2015

Blackgrass control measures

- Herbicide resistance: HGCA
- P Multiple-herbicide resistance
- P now occurs virtually on all
- ^{pe} farms.
- P No new herbicides are likely
- ^{py} to become available.
 - Stormer/existing-herbicides
- nay withdrawn for


Cultural control

Ploughing = 69%


Delayed autumn drilling by 3 weeks = 31%

Higher seed rates = 26%

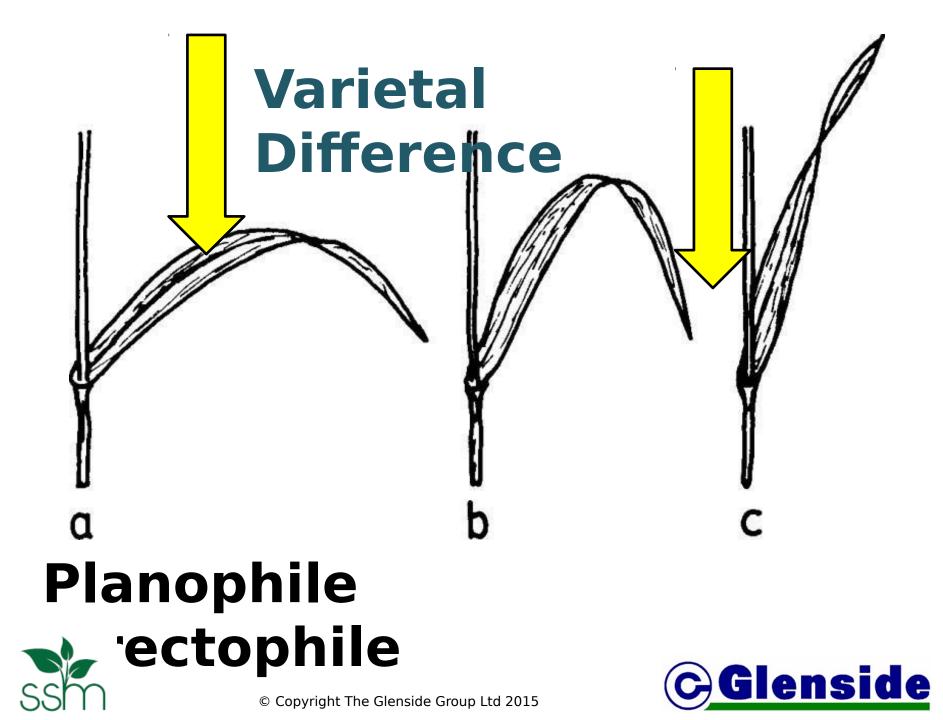
Competitive cultivars = 22%

HGhttp://www.hgca.com/crop-management/weed-management/black-grass.aspxCA

Chemical stacking practised now at full rates

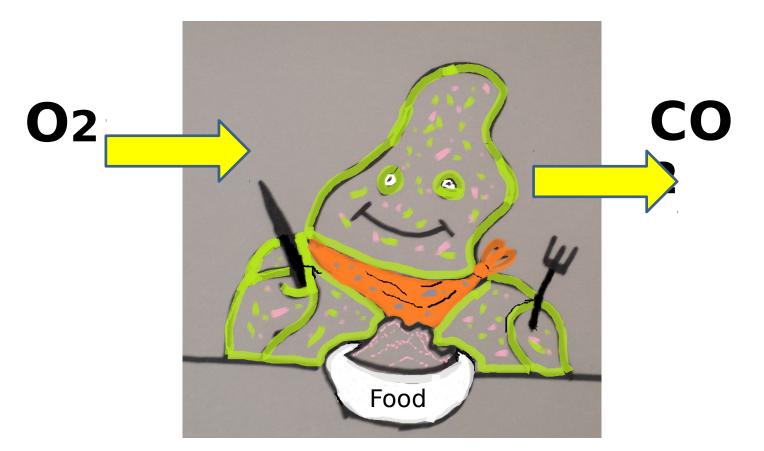
500 seeds/m2 at 99 % control

will still leave 5 seeds/m2 Each seed can produce 20 heads with 100 seeds / head.



Crop Competition

Depth of drilling Effects the emergence and therefore the speed to create competition on weeds.


Control Techniques crease Blackgrass Germination? or

ncrease Blackgrass Dormancy?

- Blackgrass dormancy is linked to temperatures in late June and early July
- Hot weather giving seed of very low dormancy and high germination

while cool temperatures give seed of high dormancy.and low ge Glenside

Add air to soils

CO2 increases germination (Basking & Basking 1998) © Copyright The Glenside Group Ltd 2015

Closed Vent

Blackgrass -April Heavy shrinking Clay soil From depth High Magnesium / Calcium Wet / Cold

From Clod Just 9002 Just 9002 Management? Glenside Grup 14 2015

© Copyright The Glenside Group Ltd 2015

Blackgrass a marsh weed Anaerobic soils promotes docrease avers for soil atmosphere by Increase Co2 2-5% might **Promote seed** germination. Reduced CO2crea seeds.

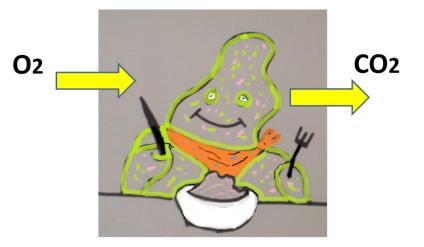
> **Min till** = 5 times less co2 released due to less cultivations.

Wet cold anaerobic soils increase dormancy of Blackgrass (a marsh weed) (Copyright The Glenside Group Ltd 2015 Glenside

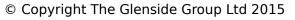
74% / Year Reduction in longevity of seeds in the soil.

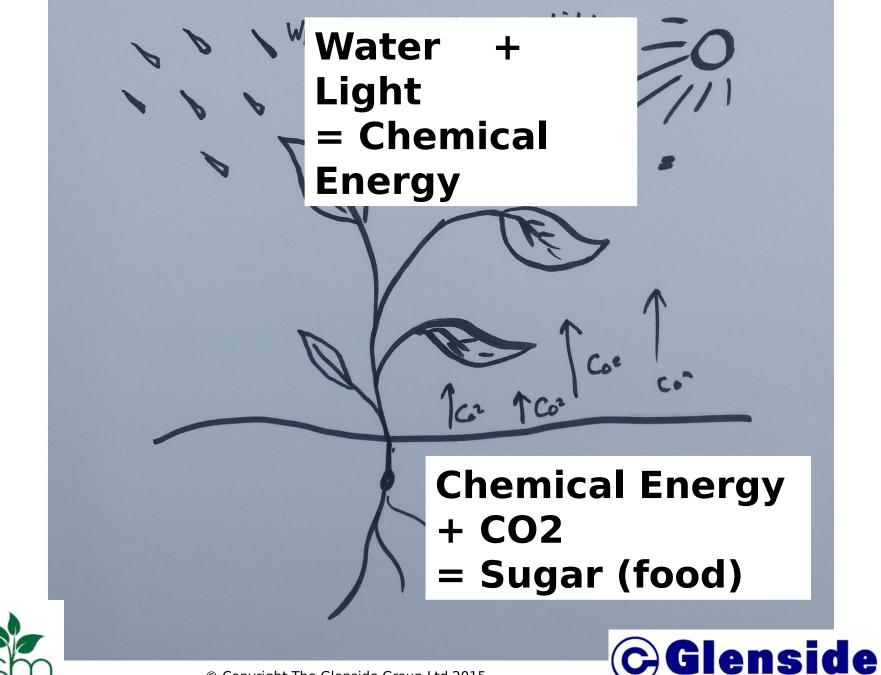
• Buried seeds > 3 inches Survival 20-30% per year

• Therefore after 3 years 1-3% will still be viable.



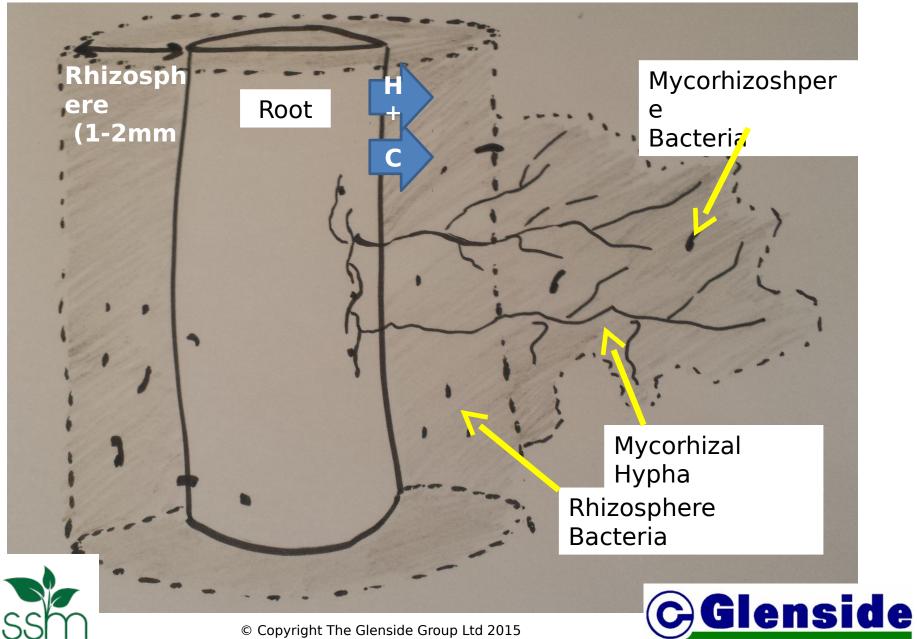
ry time you move soil you get a CO2 Rel


"Direct drilling releases 2.85t/ha less CO₂ / year than conventional tillage"

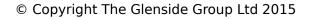

"Non plough based systems release 5 times less CO2 in the 19 days after establishment."

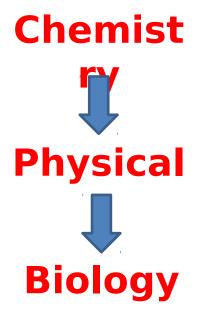
Dr Jordan. Chief executive of the soil management initiative

Canada are receiving carbon credits for such practises.



© Copyright The Glenside Group Ltd 2015


Feed the Rhizosphere



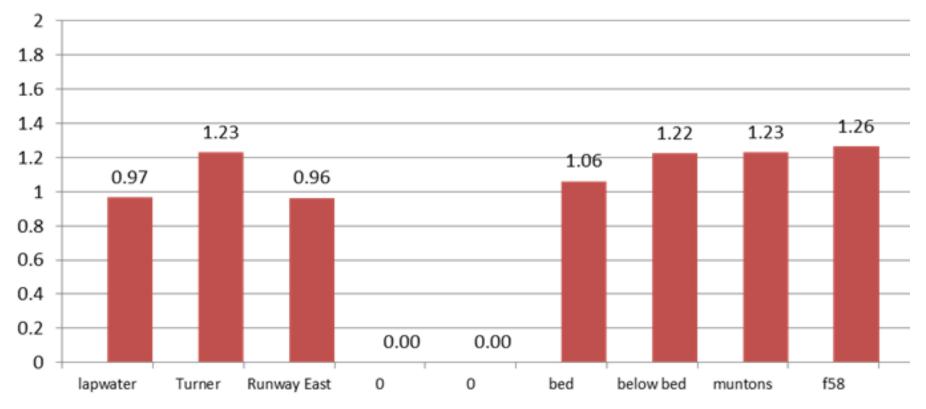
Dr. Albrecht's simple answer:

- Use the correct Chemistry
- Build as closely as possible the correct physical structure.
- which in turn supplies the proper environment for the biology (roots, worms, ~icrobes, etc.).

Soil Chemical Restrictions

High Fe (IRON)

High Magnesium


A State of the second

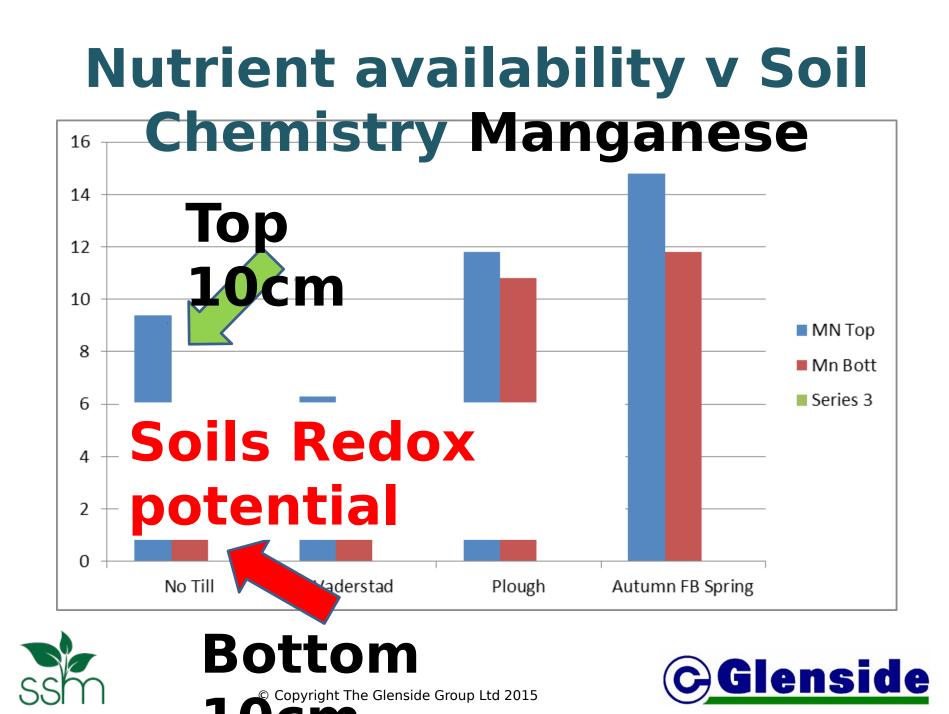
High Calcium & Magnesium

High Sodium (Salts) Glenside

Bulk density of the soil Over 1.4 is restrictive to

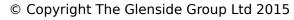
"Bd of 1.5 - 1.6 "estricts worm activity and rooting"

Air - O2 - Warmer - Looser Aerobic bacteria - Fungi Ideal for seed germination Aerobic soil


Anaerobic Soil

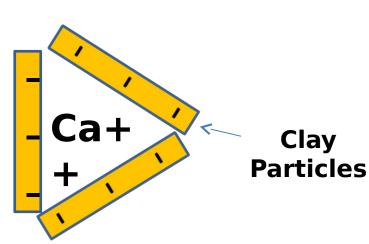
Little or no Air - Little or no O2 Colder / Tighter Anaerobic bacteria NO fungi

No Till System plough based


Chemical absorption by straw (OM)? Lack of herbicide contect with soil? The Glenside Group Ltd 2015

Maintain root hairs

Maintain Soil Structure Calcium : Magnesium ratios %

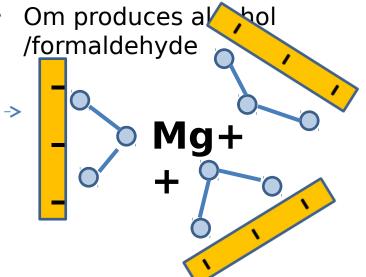


65-75% 10-15% Calcign Structure

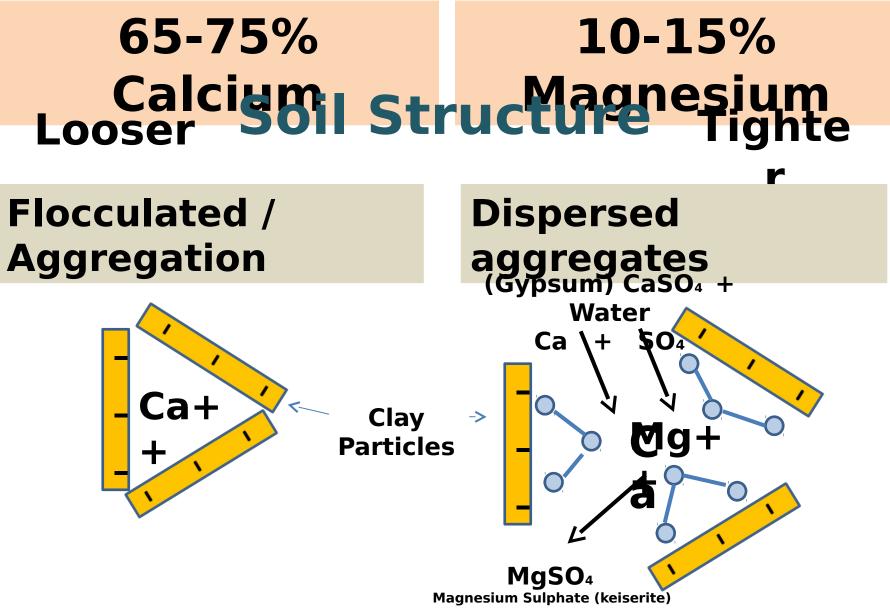
High Calcium soil.

- More oxygen
- Drains freely
- Aerobic breakdown of OM.

Too High Calcium soil.

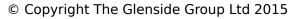

- Loose granulation and structure
- Interfere with available

nutrients


Aerobic breakdiowine Officional Ltd 2015

High Magnesium soil.

- Less Oxygen
- Drains slowly
- Poor OM decomposition if at all.

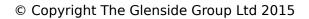


Comprehensive soil analysis?

рн				
<u>Phosphorus (ppm)</u>	64	16	Very High	(Index 4.7) Possible interference with availability from the soil of Fe,Cu,Zn.
Potassium (ppm)	230	121	Normal	(Index 2.9) 300 kg/ha K2O (240 units/acre).
Magnesium (ppm)	91	51	Normal	(Index 2.8) 40 kg/ha MgO (32 units/acre).
Sulphur (ppm)	5	10	Low	CONSIDER TREATMENT.
Calcium (ppm)	1750	2000	Slightly Low	CONSIDER TREATMENT.

Laboratory		Field Details		Index			mg/l (Available)			
Sample Reference N		Name or O.S. Reference with Cropping Details	Soil pH	Ρ	к	Mg	Р	к	Mg	
42938/14	1	SAMPLE 2 6 acres Grass Reseed into Grazing	7.8	3	2+	2	32.2	235	52	
42939/14	2	SAMPLE 3 11 acres Spring Oats into Grazing	7.3	5	3	3	77.4	286	137	

No Calcium **No Sodium** Very basic limited information nside



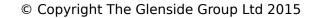
No percentages

Analysis	Result	Guideline	Interpretation	Comments				
рН	6.0	6.5	Slightly Low	Adequate for this crop. Other crops may require lime.				
Phosphorus (ppm)	17	16	Normal	(Index 2.1) 170 kg/ha P2O5 (136 units/acre).				
Potassium (ppm)	143	121	Normal	(Index 2.1) 300 kg/ha K2O (240 units/acre).				
<u>Magnesium (ppm)</u>	92	51	Normal	(Index 2.8) 40 kg/ha MgO (32 units/acre).				
Calcium (ppm)	1622	2000	Slightly Low	CONSIDER TREATMENT.				
Sulphur (ppm)	2	10	Very Low	CONSIDER TREATMENT.				
Manganese (ppm)	94	20	Normal	Adequate level.				
Copper (ppm)	8.1	2.1	Normal	Adequate level.				
Boron (ppm)	1.44	1.60	Slightly Low	CONSIDER TREATMENT.				
Zinc (ppm)	5.0	4.1	Normal	Adequate level.				
Molybdenum (ppm)	0.11	0.60	Very Low	Low priority on this crop. Other crops may be affected.				
Iron (ppm)	900	200	Normal	Adequate level.				
Sodium (ppm)	41	90	Very Low	Not a problem for this crop.				
C.E.C. (meq/100g)	14.0	15.0	Slightly Low	Cation Exchange Capacity indicates a slightly low nutrient holding ability - soil applied nutrients could be readily leached. Where possible foliar applied nutrients should be recommended.				

Reference: 10078/42939/14 Field Name: SAMPLE 3	Result	(*)	Deficient	Marginal	Target	Marginal	Excessive
EDTA Extractable Copper mg/l	26.0						
Hot Water Soluble Boron mg/l	1.2						
Ammonium Nitrate Extractable Sodium mg/l	25.6	7					
EDTA Extractable Zinc mg/l	15.4	8					
Ammonium Nitrate Extractable Calcium mg/l	2184.9	2					
DPTA Extractable Iron mg/l	96.9	3					
Organic matter (LOI) %	2.9	4					
Discussion Duffer Extractable Sulphate mg/l	11.9	5					
ble Manganese mg/l	8.2						
on Exchange Capacity meq/100g	16.9	6					

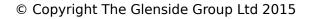
SS

Ensure excessive chemicals (Fe) don't effect rooting and pH



Good soil aggregates and active earth worms

Poor soil aggregates and hiding earth worms



Create the environment:

- Use the correct chemistry
- Build as closely as possible the correct physical structure.
- which in turn supplies the proper environment for the biology (roots, worms, ~icrobes, etc.).

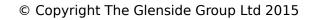
Whats the Impact of chemicals & Herbicides?

They act in different ways

- **1.PSII** Photosystem **inhibitors** (prevent photosynthesis)
- **2.EPSP** inhibits the biosynthesis of aromatic acids (Glyphosate)
- 3.AHAS ALS Catalyses

valine/leucine/isoleucine (only exist in plants)

- 4.PPO inhibition
- 5.ACC acetyl-CoA Carboxylase inhibitors
- 6.GS glutamine synthesis


7.IAA – acting on Auxin receptors (hormone s – 2,4-D)Sodium / Copper

Anaerobic Soil Organic

Organic Matter Decomposition

May result in **phytotoxic and volatile compounds**

called Bio-fumigation (stapleton et al 2000a)

Bio fumigation

Isothiocyanates (ITC) from turnip rape mulch

C

presses^{py} of Tatek of mats 55, and v

Chemical Half life

р	esticide	Active ingredient	Optimal pH of Spray Mix	Water pH of	Water pH of spray mix
				spray mix	
1	nsecticid	Chlorpyripho	pH 5 = 63	pH 7 = 35	pH 8 = <u>1</u> .5
e		S	days	days	hrs
		Cypermethry n	рН 4		pH 9 = 35hrs
fu	ungicide	Dithane	-pH 5	pH 5 =20days	pH7= 17 hrs
Η	lerbicide	Roundup	pH 5	pH 5	
				=optimal	
		Fusilade	рН 4	pH 4 = 500days	pH 7 = 150days
		Pendamethli n		Stable over wide range	
S	h		The Glenside Group Ltd 2015		<u> Ienside</u>

The Impact of a Chemically

- Chemi**Caperoria** New York Point ways
 to perform there functions
- A Debate on there effects on soil biota.
- **Direct** Harm due to direct contact
- Indirect Changes caused to the environment of the organism
- Short
- Long Term

Due to the resilience of the soil logical populations to come back (Angus et al. 1999) © Copyright The Glenside Group Ltd 2015

Biological Detox: Of chemical compounds and Micro-organismed by the new toxify pesticide residues.

- Physicochemical processes
- Microbiological decomposition
- Absorption by higher plants and the soil fauna.

Soils are rich in micro-organisms,

• Actinomycetes, fungi and bacteria.

Detoxified by their adsorption to

umus and other colloids or the formation of stable complexes in the **Glenside**

Detoxification -Bioremediation

a natural process which relies on bacteria, fungi, and plants to alter contaminants as these organisms carry out their normal life **1.Attenuation** unctions

1.Attenuation - weaken the

Natural attentiation relies on natural conditions and behaviour of soil miceologication attention are indigenous to soil.

Detoxification -Bioremediation

a natural process which relies on bacteria, fungi, and plants to alter contaminants of these organisms carry out their normal life functions

Natural attenuation relies on natural conditions and behaviour of soil microorganisms that are indigenous to soil. 2. **Biostimulation** –

Consists of adding nutrients and other substances to soil to catalyze natural attenuation energy -

Introduction of exogenic microorganisms (sourced from outside the soil environment) capable of detoxifying a particular

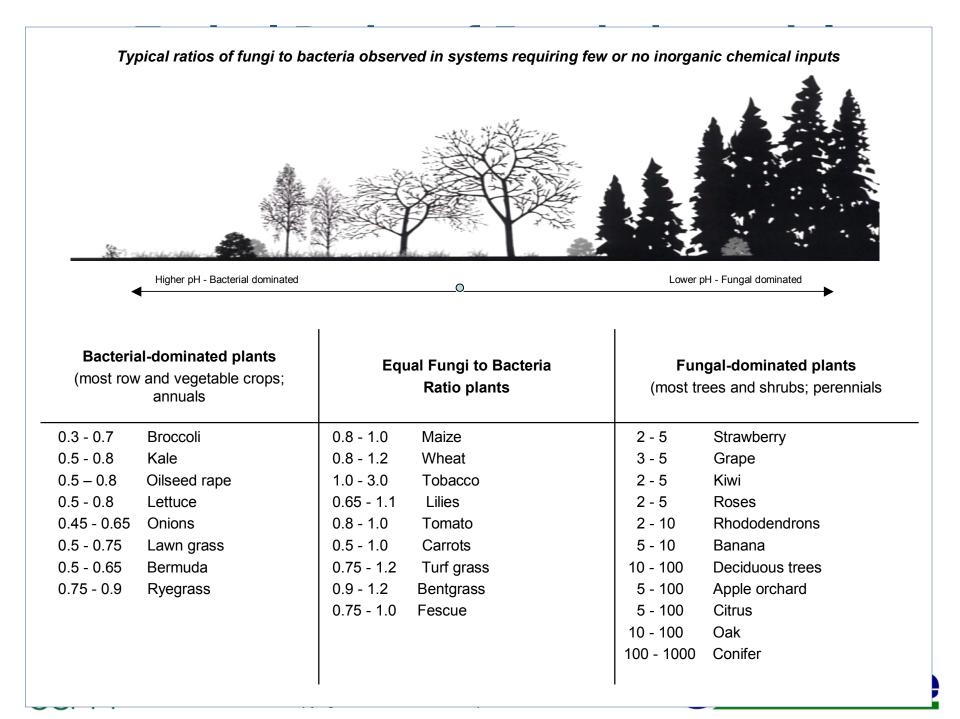
© Copyright The Glenside Group Ltd 2015

Microorganisms have limits of tolerance for particular environmental conditions

 Nitrogen, and photopholity are necessary for microbial activity and cell growth

Moisture Content

- All soil microorganisms require moisture for cell growth and function
- Excess moisture, such as in saturated soil, is undesirable because it reduces the amount of available oxygen for aerobic respiration

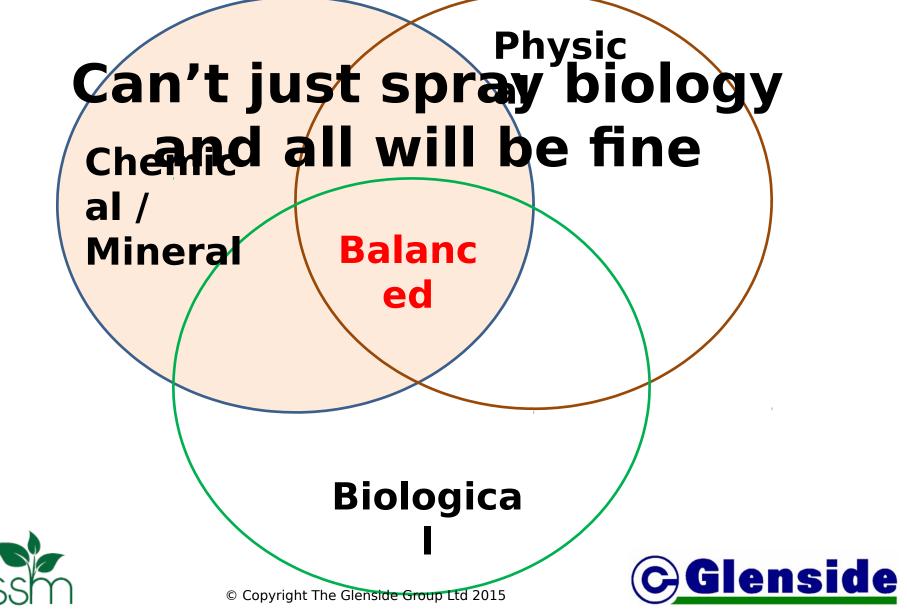

Microorganisms have limits of tolerance for particular environmestal-conditions

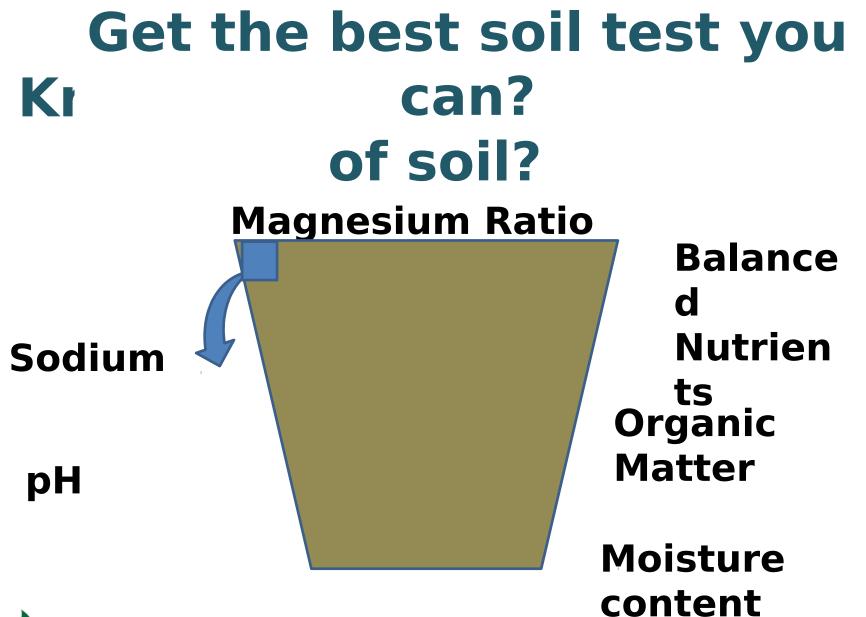
• Soil pH can affect availability of nutrients

 Most microbial species can only survive within a certain pH range

Dr. Albrecht devised a simple answer:

- Use the correct Chemistry
- Build as closely as possible the correct Physical structure.




Which in turn supplies the proper environment for the Biology

(roots, worms, microbes,

Balance the system?

enside

© Copyright The Glenside Group Ltd 2015

SSM Recommend!

 Understand, Measure & use < rect & appropriate chem' • Create as clor **∠**•e the ** o your soils correct physi **⊿pply the proper** .ment for **Biology** .s, worms, microbes, etc.). ()

© Copyright The Glenside Group Ltd 2015

© Copyright The Glenside Group Ltd 2015

Solutions for Eco-nomically Sustainable Farming

Kevin Ashford Regional Soil Agronomist