Animal Feeds: What we feed livestock matters

Samuel Smith (Chair) Forum for the Future

Karen Luyckx Feedback Christine Page Smiling Tree Farm

Ben Scriven Tamarisk Farm

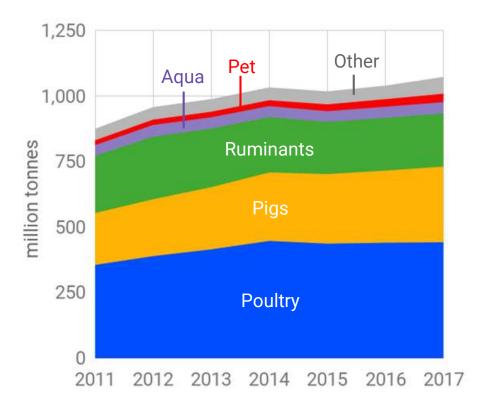
A collaboration focused on:

Accelerating momentum across the animal feed system to act on sustainability.

Contraction of the second of t

forumforthefuture.org/feed-compass

Fresh clearance eating into forest, Bolivia Image credit: Mighty Earth



Global feed production use (non-forage)

Data from Alltech Global Feed Surveys (2011-2018)

Common non-forage feed ingredients:

- **Cereals:** corn, wheat, barley, oats, sorghum etc
- **Protein meals:** soybean, rapeseed meal, lupins). Often co-products
- Plus fats and oils, minerals, feed additives etc.

What does mainstream industry focus on?

1. Food/feed safety:

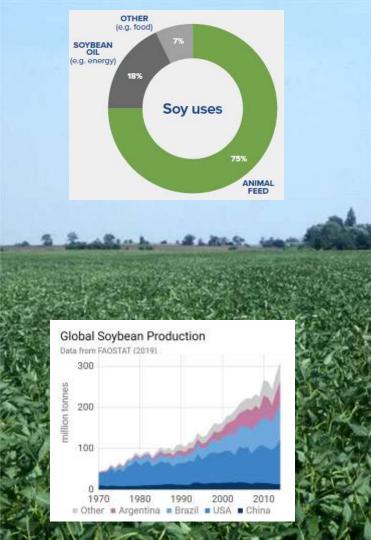
Reputation / animal health

2. Efficiency:

Getting the most out of every ounce. Precision feed, amino acid supplements.

3. Price:

Least cost formulation

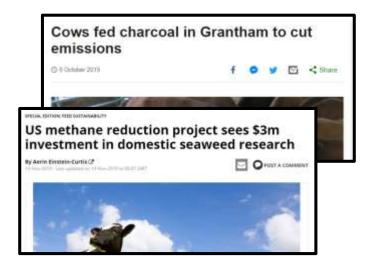


Soy: a troublesome, cheap and useful protein source

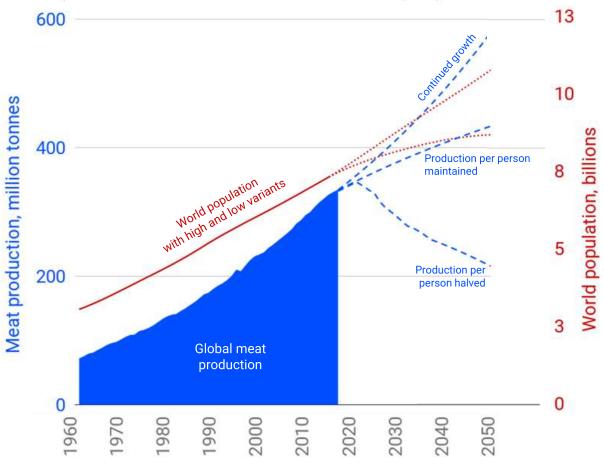
Major focus area for UK retailers, but traction is limited.

- A highly efficient source of protein
- 75% of global production goes to animal feed
- Europe imports ~95% of its soy (mostly S. America).
- In UK ~26% known as from regions free from deforestation (See 3Keel supermarket supply chain research)
- Transparency and certification is low.
 Globally only ~1-2% is certified.

Novel animal feeds


- Insects
- Algae and seaweed
- Single cell proteins
- Amino acid supplements (less novel)
- Biochar

Norwegian salmon producer trials Skretting's insect based salmon feed



World Meat Production

Examples of Future Scenarios. Historical data from FAOSTAT (2019)

Meeting future animal feed demands...

~280 million hectares of additional land by 2030

(this is impossible)

Thank you

Samuel Smith S.Smith@forumforthefuture.org

FORUM FOR THE FUTURE

Safe leftovers for pigs and other omnivores

FEED BACK © Karolina Webb

Karen Luyckx

Avoiding food – feed competition

• Co-products

• Food waste

• Marginal grassland

From: Van Zanten et al. 2018. 'Defining a Land Boundary for Sustainable Livestock Consumption'. *Global Change Biology* 24 (9)

African Swine Fever

Making leftovers safe for feed

FFN

Please let me know your views, comments and questions.

Many thanks

karen@feedbackglobal.org

War-time Advertisement: "Swill is more appetising when steamcooked in an Alfa-cooker and the nourishment value is increased. The pigs like it, thrive on it, and it takes less time to prepare. The waste food is sterilized, all bacteria killed, by steam cooking - a big safeguard against Swine Fever, Foot and Mouth diseases, etc."

Why Animal Feed Matters

- It affects the health & wellbeing of the animal
- It affects the flavour & nutritional value of their meat or milk
- How animal feed is produced/grown can either create or destroy **wildlife habitat**
- It can regenerate **soil health** or erode soil
- It can sequester **carbon** or emit it

"the health of the soil, plant, animal and man is one, and indivisible" ~ Sir Albert Howard

MILING TREE

Smiling Tree Farm, South Shropshire

- Small-scale 70 acre pastoral farm
 - Steep land (650-1020ft) unsuited to growing arable crops
- Traditional Hereford beef suckler herd
- Cow-calf micro-dairy of Jersey cows
- No routine wormers, medications or vaccinations #AntibioticFree #Homeopathy
- Feed: diverse pastures & browsing trees
- Certified organic
- Farm run using holistic management, organic & permaculture principles
- We practice Regenerative Farming

www.smilingtreefarm.com

Cows are ruminants

- Fossil records show grasses and ruminants coevolved 50m years ago
- A rumen is a bio-digester: filled with microbes that ferment cellulose
- Cellulose is the most abundant organic compound on the planet
- Cows turn human inedible plants to highly nutritious human edible food
- Starches (grains) negatively impact rumen health

Cows are UPCYCLERS hrough the magic of fermentation they take human inedible plants and upcycle them to highly nutrient-dense foods

Nutrients in Milk

Fat-soluble nutrients particularly impacted by diet of cow

There is huge variation in actual micro-nutrient content which depends primarily on the diet of the cow, but also her breed, age, health, stage of lactation & contentedness. FAT SOLUBLE MICRO-NUTRIENTS: Omega 3 - the essental DHA form CLA - conjugated linoleic acids CREAM Vitamin A & beta carotene Vitamin D Vitamin F Vitamin K2 - vital nutrient deficient in most The fat-soluble nutrients are needed for the effective absorption of the water-soluble nutrients - always drink WHOLE milk. WATER SOLUBLE MICRO-NUTRIENTS: Calcium Magnesium SKIMMED Phosphorus MILK Potassium Selenium Zinc

Vitamin B1, B2, B3, B5, B6, B12

Folate
 Vitamin C

NOTE BHEAMME BICDLE B.S. A.D.

Microbes & nutrition

- A cow is a walking bio-digester!
- When a cow grazes, she is not feeding herself, but the microbes in her rumen
- 1ml of rumen fluid contains around:
 - 25 billion bacteria
 - 10 million protozoa
 - 10 thousand fungi
- Each cow has a quadrillion 1,000,000,000,000,000 rumen microbes!!!
- By-products of microbial action on forage is what nourishes the cow & in symbiosis microbes in cow saliva stimulate plant growth
- BUT what the cow eats directly impacts the balance of microbes & the resultant by-products =>
 nutritional value of her milk or meat
- Changes to rumen pH causes microbial populations to change, below pH 5.4 microbes die, lactic acid builds up => rumen acidosis
- Concentrates like cereals, soya, brewers grains, fodder beet, maize, etc all lower rumen pH => poor cow health, produce impacts human health

Organic more nutritious

minerals and antioxidants.

6

Newcast Universi		Research	Study	International	Business	Alumni	Staff & Students	
Press Off	îce							
Newcastle University	> Press Office > Latest New	5						
Latest News	News Study finds clear differences between organic and non-organic product							
- News Archive	A new study has shown that both organic milk and meat contain around 50% more beneficial omega-3 fatty acids than conventionally produced products.							
Find an Expert								
In The Media								
About Us	Analysing data from arour reviewed <u>196 papers on</u> differences between org terms of fatty acid compo	nd the world, the milk and <u>67 par</u> anic and conve	ntional milk	at and found clear and meat, especial	ly in 🔣			

Publishing their findings today in the British Journal of Nutrition, the team say the data show a switch to organic meat and milk would go some way towards increasing our intake of nutritionally important fatty acids.

Gillian Butler. Senior Lecturer in animal nutrition at Newcastle University

Grass-fed beef vs Grass-fed 'grain-finished' beef

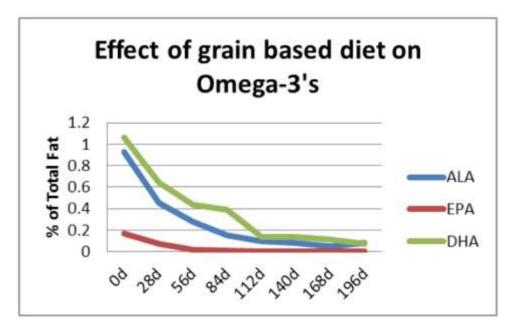


Figure 1: The effect of a grain-based diet on the omega-3 content of beef. (Duckett, S. K., Wagner, D. G., Yates, L. D., Dolezal, H. G., & May, S. G. (1993). Effects of Time on Feed on Beef Nutrient Composition. *Journal of Animal Science*, *71*, 2079-2088.)

Pasture diversity

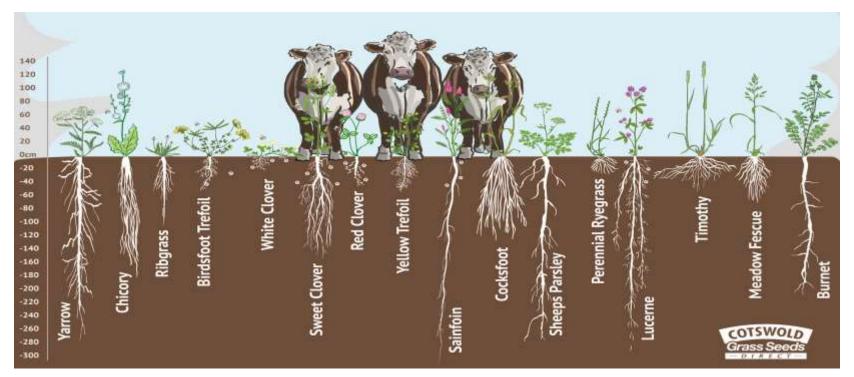
Is vital to the health of soil & cow microbiome Provides invertebrate & small mammal habitat

"MILING TREE FARM

Flavour starts in the Soil

- Flavour & nutrition inextricably linked
 - Innate desire to hunt & gather diverse range of foods containing healthgiving nutrients
 - Complex nutritional richness creates complex flavour
 - Phytonutrients create a myriad of flavours & aromas
 - Palates corrupted by refined & processed foods
- Plants exchange 'exudates' (liquid carbon/sugar) for nutrients
 - More diverse soil life, deeper roots, more 'solar panels' = more connections & more nutrients available
 - Plants produce phytonutrients (antioxidants & myriad other micro-nutrients) to grow, reproduce, attract pollinators & protect itself from disease or pest attack
 - These phytonutrients health-giving to grazing animals & humans => organic produce more nutritious
 - Plant alkaloids are the medicinal components of food

Herbs oversown into pasture


Salad bar beef: some herbs natural anthelmintics

www.smilingtreefarm.com

Importance of species diversity & root depth

Diverse hedgerows

shelter, shade, browse for cows more invertebrate & small mammal habitat

Trees as important as pasture

self-medication for cows more wildlife habitat

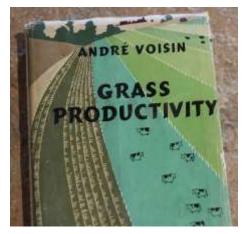
Trees as important as pasture

silvopasture

www.smilingtreefarm.com

Trees as important as pasture

shelterbelts of over 20 species



Mob-grazing – nothing new mimicking natural grazing systems

Old saying: "Never leave the sheep in the same field long enough to hear the church bell ring twice"

Andre Voisin's book Grass Productivity, written in 1959

In essays on agriculture from 1777:

In Europs Relating to Agriculture and Rural Affairs (1777),¹ James Anderson of Scotland urged farmers to subdivide pastures into smaller paddocks, graze each one for a day, and then keep the animals out so the plants could regrow. Sounds like good grazing management! All this was long before the invention of electric fence, so Anderson had to use stone walls and a lot of labor to create paddocks. Anderson wrote:

To obtain this constant supply of fresh grass, let us suppose that a farmer who has any extent of pasture ground, should have it divided into 15 or 20 divisions, nearly of equal value: and that, instead of allowing his beasts to roam indiscriminately through the whole at once, he collects the whole number of beasts that he intends to feed into one flock, and turns them all at once into one of these division; which, being quite fresh, and of sufficient length of bite, would please their palate so much

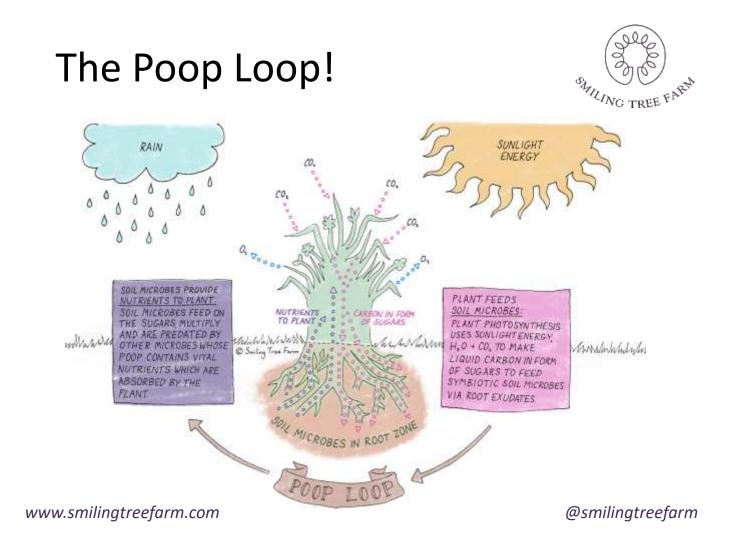
Mob-grazing paddocks

Pasture, a carbon pump, the ultimate perennial crop

Converting to Silvopasture

What does this equation represent? 6CO2 + 6H2O + sunlight => C6H12O6 + 6O2

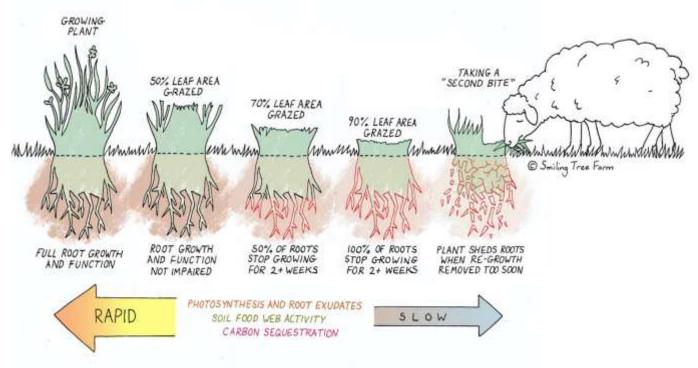
All life depends upon


PHOTOSYNTHESIS:

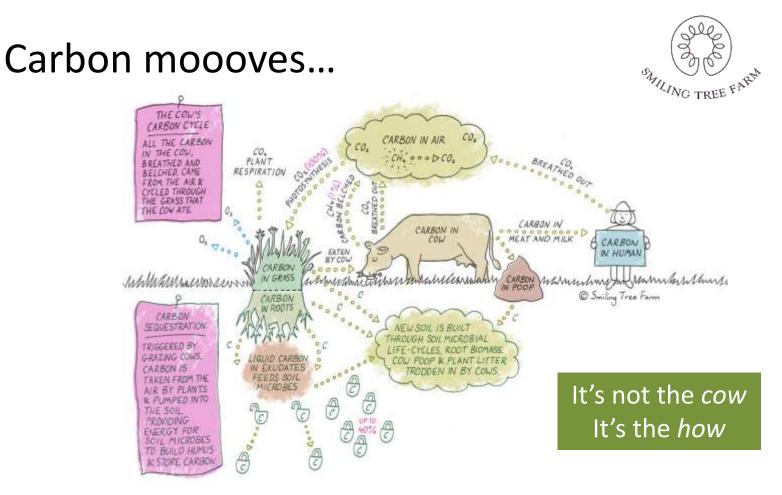
6CO2 + 6H2O + light energy => C6H12O6 + 6O2 Carbon + water + sunlight => liquid + oxygen

dioxide

The "liquid carbon pathway" (Dr Christine Jones) Pumping carbon via plant root exudates into the soil *Every bite primes the carbon pump*

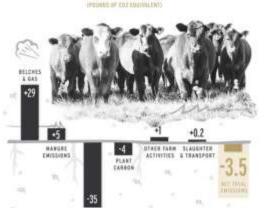

Regenerative Agriculture starts with a focus on supporting the "Poop Loop" to maximise photosynthesis & root exudates and provide plants with micro-nutrients

www.smilingtreefarm.com

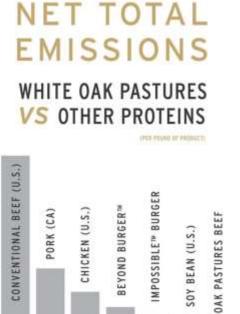

Grazing impact on plant roots

Carbon sequestration, soil health, water retention...

www.smilingtreefarm.com


Regenerative Agriculture

Sequesters more carbon than it emits



WHITE OAK PASTURES BEEF SEQUESTERS MORE CARBON THAN IT EMITS

Emissions breakdown for every pound of White Oak Pasture's beef produced:

SOIL CARREN

140

WHITI

For every gramme of carbon stored in the soil, the soil can hold an extra 8 grammes of water

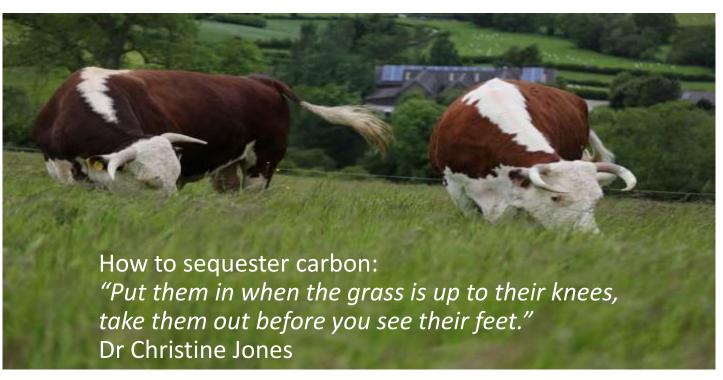
1g carbon = 8g water held in soil

Tillage, bare fallows, synthetic fertilisers, 'cides (killers: herbicides, fungicide, etc) all release that carbon turning CO2 sinks into sources

Carbon is fertility

The annual costs of soil degradation in England & Wales are between £0.9 and £1.4 billion, with a central estimate of £1.2 bn. These costs are mainly linked to loss of organic content of soils (47% of total cost), compaction (39%) and erosion (12%).

The total costs of soils degradation in England & Wales, Cranfield University (2015)



The UK has lost 84% of its fertile topsoil since 1850, with the erosion continuing at a rate of 1cm to 3cm a year.

The Committee on Climate Change (CCC) report (2015)

Grazing tall grass Each bite primes the carbon pump

www.smilingtreefarm.com

Enteric vs fossil methane

 \vee

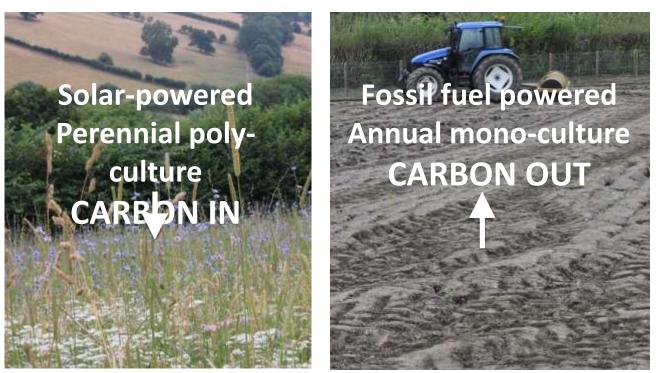
Food Climate Research Network @FCRNetwork

Replying to @FCRNetwork and @freerangedairy The difference between fossil methane and livestock methane is when the methane breaks down to CO2: with fossil methane, that CO2 is additional to the atmosphere, but with livestock methane, the CO2 is not additional to the atmosphere.

1:03 PM · Aug 9, 2019 · Twitter Web App

www.smilingtreefarm.com

Cycling vs adding carbon


Cows fed perennial polycultures cycle & recycle carbon (including methane) using sunlight & rain

Any food or feed grown, harvested & transported using fossil fuels ADDS carbon

Carbon in, carbon out

www.smilingtreefarm.com

Why Animal Feed Matters

- It affects the health & wellbeing of the animal
- It affects the flavour & nutritional value of their meat or milk
- How animal feed is produced/grown can either create or destroy **wildlife habitat**
- It can regenerate **soil health** or erode soil
- It can sequester carbon or emit it

So feed cows:

- Perennial polycultures of
 - Diverse pastures
 - Browsing hedgerows & trees
- Use holistic/mob grazing practices to
 - Stimulate photosynthesis & carbon sequestration
 - Build soil health, fertility & water retention
 - Integrate wildlife & food production

Future challenges/opportunities

Challenges:

- Reconnecting the consumer with food production
- Overcoming the perception that 'cheap food' is cheap
- How to beat the \$\$\$\$ driven food propaganda!

Opportunities:

 More and more enlightened consumers are looking for high quality, ethically produced food, they appreciate its value and wish to support small-scale, local producers

Thank you

Christine Page www.smilingtreefarm.com Twitter & Instagram: @smilingtreefarm